30x^2+45+15=40x^2-22x-6

Simple and best practice solution for 30x^2+45+15=40x^2-22x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30x^2+45+15=40x^2-22x-6 equation:



30x^2+45+15=40x^2-22x-6
We move all terms to the left:
30x^2+45+15-(40x^2-22x-6)=0
We add all the numbers together, and all the variables
30x^2-(40x^2-22x-6)+60=0
We get rid of parentheses
30x^2-40x^2+22x+6+60=0
We add all the numbers together, and all the variables
-10x^2+22x+66=0
a = -10; b = 22; c = +66;
Δ = b2-4ac
Δ = 222-4·(-10)·66
Δ = 3124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3124}=\sqrt{4*781}=\sqrt{4}*\sqrt{781}=2\sqrt{781}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{781}}{2*-10}=\frac{-22-2\sqrt{781}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{781}}{2*-10}=\frac{-22+2\sqrt{781}}{-20} $

See similar equations:

| 30^2=x | | 75=25+5x | | (10x+20)+(x+15)+(x+5)=180 | | x2+4=25 | | 2x+x=88 | | –8x–11=4x+13 | | z−313=176 | | 12x11=121 | | -7x+50=-60 | | 81.4-6+13x+4=180 | | –3m–6=48 | | 25=5x5 | | (4x-6)+150=180 | | 5/10=x/1000 | | 2x+5=–25 | | 3a-13=9 | | -2x+8x+13=0 | | x2+9=205 | | -4(4x+2)-5=-5(x+4)+4x | | 3x-9x=8 | | -4=17y+6 | | 10x+20+x+15+x+5=180 | | 11x-6+15x-8=180 | | 13-m=20 | | (D-2)y=X | | x+150=385 | | 9m=–9+8m | | 10-m=$9.87 | | -21=12+b | | 4D^2=-9y | | x×36=17 | | -7(8x–5)=4x+35 |

Equations solver categories